Optimal Switching in Finite Horizon under State Constraints

نویسنده

  • Idris Kharroubi
چکیده

We study an optimal switching problem with a state constraint: the controller is only allowed to choose strategies that keep the controlled diffusion in a closed domain. We prove that the value function associated with this problem is the limit of value functions associated with unconstrained switching problems with penalized coefficients, as the penalization parameter goes to infinity. This convergence allows to set a dynamic programming principle for the constrained switching problem. We then prove that the value function is a solution to a system of variational inequalities (SVI for short) in the constrained viscosity sense. We finally prove that uniqueness for our SVI cannot hold and we give a weaker characterization of the value function as the maximal solution to this SVI. All our results are obtained without any regularity assumption on the constraint domain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Finite-time Control of Positive Linear Discrete-time Systems

This paper considers solving optimization problem for linear discrete time systems such that closed-loop discrete-time system is positive (i.e., all of its state variables have non-negative values) and also finite-time stable. For this purpose, by considering a quadratic cost function, an optimal controller is designed such that in addition to minimizing the cost function, the positivity proper...

متن کامل

A Finite Horizon Optimal Multiple Switching Problem

We consider the problem of optimal multiple switching in finite horizon, when the state of the system, including the switching costs, is a general adapted stochastic process. The problem is formulated as an extended impulse control problem and completely solved using probabilistic tools such as the Snell envelop of processes and reflected backward stochastic differential equations. Finally, whe...

متن کامل

Optimal therapy scheduling for a simplified HIV infection model

This work is motivated by the drug therapy scheduling problem in HIV infection. Using simplified switched linear system models of HIV mutation and treatment with certain class of symmetry and finite horizon cost functions, we demonstrate that the optimal state and costate trajectories lie on a sliding surface where infinitely fast switching may occur. Results suggest that in the absence of othe...

متن کامل

On control of discrete-time state-dependent jump linear systems with probabilistic constraints: A receding horizon approach

In this article, we consider a receding horizon control of discrete-time state-dependent jump linear systems, particular kind of stochastic switching systems, subject to possibly unbounded random disturbances and probabilistic state constraints. Due to a nature of the dynamical system and the constraints, we consider a one-step receding horizon. Using inverse cumulative distribution function, w...

متن کامل

OPTIMAL CONTROL OF AVERAGE REWARD MARKOV DECISION PROCESSES ' CONSTRAINED CONTINUOUS - TIME FINITE Eugene

The paper studies optimization of average-reward continuous-time finite state and action Markov Decision Processes with multiple criteria and constraints. Under the standard unichain assumption, we prove the existence of optimal K-switching strategies for feasible problems with K constraints. For switching randomized strategies, the decisions depend on the current state and the the time spent i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Control and Optimization

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2016